螺杆影响塑化的原因和螺杆参数
一、螺杆的几个重要几何参数
1、螺杆直径(D)
a、与所要求的注射量相关:
射出容积=1/4*π*D2*S(射出行程)*0.85;
b、一般而言,螺杆直径D与最高注射压力成反比,与塑化能力成正比。
2、输送段
a、负责塑料的输送,推挤与预热,应保证预热到熔点;
b、结晶性塑料宜长(如:POM、PA)非晶性料次之(如:PS、PU、ABS),热敏性最短(如:PVC)。
3、压缩段
a、负责塑料的混炼、压缩与加压排气,通过这一段的原料已经几乎全部熔解,但不一定会均匀混合;
b、在此区域,塑料逐渐熔融,螺槽体积必须相应下降,以对应塑料几何体积的下降,否则料压不实,传热慢,排气不良;
c、一般占25%以上螺杆工作长度,但尼龙(结晶性料)螺杆的压缩段约占15%螺杆工作长度,高粘度、耐火性、低传导性、高添加物等塑料螺杆,占40%\'50%螺杆工作长度,PVC螺杆可占100%螺杆工作长度,以免产生激烈的剪切热。
4、计量段
a、一般占20\'25%螺杆工作长度,确保塑料全部熔融以及温度均匀,混炼均匀;
b、计量段长则混炼效果佳,太长则易使熔体停留过久而产生热分解,太短则易使温度不均匀;
c、PVC等热敏性塑料不宜停留时间过长,以免热分解,可用较短的计量段或不要计量段。
5、进料螺槽深度,计量螺槽深度
a、进料螺槽深度越深,则输送量越大,但需考虑螺杆强度,计量螺槽深度越浅,则塑化发热、混合性能指数越高,但计量螺槽深度太浅则剪切热增加,自生热增加,温升太高,造成塑胶变色或烧焦,尤其不利于热敏性塑料;
b、计量螺槽深度=KD=(0.03\'0.07)*D,D增大,则K选小值。
二、影响塑化品质的主要因素
影响塑化品质的主要因素为:长径比、压缩比、背压、螺杆转速、料筒加热温度等。
1、长径比:为螺杆有效工作长度与螺杆直径的比值。
a、长径比大则吃料易均匀;
b、热稳定性较佳的塑料可用较长的螺杆以提高混炼性而不烧焦,热稳定性较差的塑料可用较短的螺杆或螺杆尾端无螺纹。以塑料特性考虑,一般流长比如下:热固性为14\'16,硬质PVC,高粘度PU等热敏性为17\'18,一般塑料为18\'22,PC、POM等高温稳定性塑料为22\'24。
2、压缩比:为进料段最后一个螺槽深度与计量段第一个螺槽深度的比值。
a、考虑料的压缩性、装填程度、回流等影响,制品要密实、传热与排气;
b、适当的压缩比可增加塑料的密度,使分子与分子之间结合更加紧密,有助于减少空气的吸取,降低因压力而产生的温升,并影响输出量的差异,不适当的压缩比将会破坏塑胶的物性;
c、压缩比值越高,对塑料在料管内塑化过程中产生的温升越高,对塑化中的塑料产生较佳的混炼均匀度,相对的出料量大为减少。
d、高压缩比适于不易熔塑料,特别具低熔化粘度,热稳定性塑料;低压缩比适于易熔塑料,特别具高熔化粘度、热敏性塑料。
3、背压
a、增加背压可增加螺杆对熔融树脂所做的功,消除未熔的塑胶颗粒,增加料管内原料密度及其均匀程度;
b、背压被运用来提高料筒温度,其效果最为显著;
c、背压过大,对热敏性较高的塑料易分解,对低粘度的塑料可能会产生流涎现象,背压过小,注塑出的成品可能会有气泡。
4、螺杆转速
a、螺杆的转动速度直接影响塑料在螺旋槽内的切变;
b、小型螺杆槽较浅吸收热源快速,足够促使塑料在压缩段时间软化,螺杆与料筒壁间的摩擦热能较低,适宜高速旋转,增加塑化能力;
c、大型螺杆则不宜快速旋转,以免塑化不匀及造成过度摩擦热;
d、对热敏性较高的塑料,螺杆转速过大的话,塑料会很容易分解;
e、通常各尺寸螺杆有一定的转速范围,一般转速100\'150rpm;太低则无法熔化塑胶,太高则将塑料烧焦。
5、电热温度设定
a、使滞留于料筒及螺杆内的冷硬塑料熔融以利于螺杆转动,提供塑料获得熔融所需的一部分热量;
b、设定比熔胶温度低5\'10℃(部分由摩擦热能提供);
c、射咀温度的调整也可用来控制流涎、冷凝料(塞咀)、牵丝等问题;
d、结晶性塑料一般温度控制:
塑料种类
料筒温度℃
射出压力kgf/cm2
HDPE(高密度聚乙烯)
180\'210
500\'1500
PP(聚丙烯)
200\'270
400\'1000
PA6(尼龙6)
225\'280
700\'1000
PA66(尼龙66)
260\'280
600\'1500
e、非结晶性塑料
塑料种类
料筒温度℃
注射压力kgf/cm2
PS(聚苯乙烯)
180\'240
400\'1300
ABS(丙烯睛丁二烯苯乙烯共聚物)
200\'230
800\'1500
PMMA(聚甲基丙烯酸甲酯)
180\'220
700\'1500
PC(聚碳酸酯)
260\'310
800\'1500
改性PPO(改性聚苯醚)
240\'280
850\'1400
硬质PVC(硬质聚氯乙烯)
165\'185
1000\'1500
注:a、以上为不添加玻璃纤维的非增强塑料。
b、料筒内熔胶温度通常高于筒外控制的温度。
三、塑化料管组选用原则及过胶头组件设计
(一)考虑要点:输送段、压缩段、计量段、三段比值、压缩比、计量段螺槽深、长径比、螺牙数.
(二)选用原则
a、欲得混炼效果佳的采用长径比大,螺牙数多,压缩比大,计量段螺槽浅的设计,例如:PA、PE、PP、POM;
b、欲防止剪切过热现象的采用长径比小,螺牙数少,压缩段长,压缩比小,计量段螺槽较深的设计,例如:PC、PMMA、硬质PVC、加玻璃纤维或防火料;
c、欲得高塑化率者,采用压缩比较小,计量段螺槽较深的设计。
(三)过胶头组件设计
好的止逆阀应具备:
a、快速止逆速度能力;
b、完全止逆能力,以维持最小的塑料回流现象;
c、料流顺畅,无死角以避免局部剪切热,而造成塑料劣化现象;
d、耐磨损性,耐腐蚀性;
e、能适合多种塑料使用
1、螺杆直径(D)
a、与所要求的注射量相关:
射出容积=1/4*π*D2*S(射出行程)*0.85;
b、一般而言,螺杆直径D与最高注射压力成反比,与塑化能力成正比。
2、输送段
a、负责塑料的输送,推挤与预热,应保证预热到熔点;
b、结晶性塑料宜长(如:POM、PA)非晶性料次之(如:PS、PU、ABS),热敏性最短(如:PVC)。
3、压缩段
a、负责塑料的混炼、压缩与加压排气,通过这一段的原料已经几乎全部熔解,但不一定会均匀混合;
b、在此区域,塑料逐渐熔融,螺槽体积必须相应下降,以对应塑料几何体积的下降,否则料压不实,传热慢,排气不良;
c、一般占25%以上螺杆工作长度,但尼龙(结晶性料)螺杆的压缩段约占15%螺杆工作长度,高粘度、耐火性、低传导性、高添加物等塑料螺杆,占40%\'50%螺杆工作长度,PVC螺杆可占100%螺杆工作长度,以免产生激烈的剪切热。
4、计量段
a、一般占20\'25%螺杆工作长度,确保塑料全部熔融以及温度均匀,混炼均匀;
b、计量段长则混炼效果佳,太长则易使熔体停留过久而产生热分解,太短则易使温度不均匀;
c、PVC等热敏性塑料不宜停留时间过长,以免热分解,可用较短的计量段或不要计量段。
5、进料螺槽深度,计量螺槽深度
a、进料螺槽深度越深,则输送量越大,但需考虑螺杆强度,计量螺槽深度越浅,则塑化发热、混合性能指数越高,但计量螺槽深度太浅则剪切热增加,自生热增加,温升太高,造成塑胶变色或烧焦,尤其不利于热敏性塑料;
b、计量螺槽深度=KD=(0.03\'0.07)*D,D增大,则K选小值。
二、影响塑化品质的主要因素
影响塑化品质的主要因素为:长径比、压缩比、背压、螺杆转速、料筒加热温度等。
1、长径比:为螺杆有效工作长度与螺杆直径的比值。
a、长径比大则吃料易均匀;
b、热稳定性较佳的塑料可用较长的螺杆以提高混炼性而不烧焦,热稳定性较差的塑料可用较短的螺杆或螺杆尾端无螺纹。以塑料特性考虑,一般流长比如下:热固性为14\'16,硬质PVC,高粘度PU等热敏性为17\'18,一般塑料为18\'22,PC、POM等高温稳定性塑料为22\'24。
2、压缩比:为进料段最后一个螺槽深度与计量段第一个螺槽深度的比值。
a、考虑料的压缩性、装填程度、回流等影响,制品要密实、传热与排气;
b、适当的压缩比可增加塑料的密度,使分子与分子之间结合更加紧密,有助于减少空气的吸取,降低因压力而产生的温升,并影响输出量的差异,不适当的压缩比将会破坏塑胶的物性;
c、压缩比值越高,对塑料在料管内塑化过程中产生的温升越高,对塑化中的塑料产生较佳的混炼均匀度,相对的出料量大为减少。
d、高压缩比适于不易熔塑料,特别具低熔化粘度,热稳定性塑料;低压缩比适于易熔塑料,特别具高熔化粘度、热敏性塑料。
3、背压
a、增加背压可增加螺杆对熔融树脂所做的功,消除未熔的塑胶颗粒,增加料管内原料密度及其均匀程度;
b、背压被运用来提高料筒温度,其效果最为显著;
c、背压过大,对热敏性较高的塑料易分解,对低粘度的塑料可能会产生流涎现象,背压过小,注塑出的成品可能会有气泡。
4、螺杆转速
a、螺杆的转动速度直接影响塑料在螺旋槽内的切变;
b、小型螺杆槽较浅吸收热源快速,足够促使塑料在压缩段时间软化,螺杆与料筒壁间的摩擦热能较低,适宜高速旋转,增加塑化能力;
c、大型螺杆则不宜快速旋转,以免塑化不匀及造成过度摩擦热;
d、对热敏性较高的塑料,螺杆转速过大的话,塑料会很容易分解;
e、通常各尺寸螺杆有一定的转速范围,一般转速100\'150rpm;太低则无法熔化塑胶,太高则将塑料烧焦。
5、电热温度设定
a、使滞留于料筒及螺杆内的冷硬塑料熔融以利于螺杆转动,提供塑料获得熔融所需的一部分热量;
b、设定比熔胶温度低5\'10℃(部分由摩擦热能提供);
c、射咀温度的调整也可用来控制流涎、冷凝料(塞咀)、牵丝等问题;
d、结晶性塑料一般温度控制:
塑料种类
料筒温度℃
射出压力kgf/cm2
HDPE(高密度聚乙烯)
180\'210
500\'1500
PP(聚丙烯)
200\'270
400\'1000
PA6(尼龙6)
225\'280
700\'1000
PA66(尼龙66)
260\'280
600\'1500
e、非结晶性塑料
塑料种类
料筒温度℃
注射压力kgf/cm2
PS(聚苯乙烯)
180\'240
400\'1300
ABS(丙烯睛丁二烯苯乙烯共聚物)
200\'230
800\'1500
PMMA(聚甲基丙烯酸甲酯)
180\'220
700\'1500
PC(聚碳酸酯)
260\'310
800\'1500
改性PPO(改性聚苯醚)
240\'280
850\'1400
硬质PVC(硬质聚氯乙烯)
165\'185
1000\'1500
注:a、以上为不添加玻璃纤维的非增强塑料。
b、料筒内熔胶温度通常高于筒外控制的温度。
三、塑化料管组选用原则及过胶头组件设计
(一)考虑要点:输送段、压缩段、计量段、三段比值、压缩比、计量段螺槽深、长径比、螺牙数.
(二)选用原则
a、欲得混炼效果佳的采用长径比大,螺牙数多,压缩比大,计量段螺槽浅的设计,例如:PA、PE、PP、POM;
b、欲防止剪切过热现象的采用长径比小,螺牙数少,压缩段长,压缩比小,计量段螺槽较深的设计,例如:PC、PMMA、硬质PVC、加玻璃纤维或防火料;
c、欲得高塑化率者,采用压缩比较小,计量段螺槽较深的设计。
(三)过胶头组件设计
好的止逆阀应具备:
a、快速止逆速度能力;
b、完全止逆能力,以维持最小的塑料回流现象;
c、料流顺畅,无死角以避免局部剪切热,而造成塑料劣化现象;
d、耐磨损性,耐腐蚀性;
e、能适合多种塑料使用
螺杆分类介绍
[特 点]
通常螺桿可分为普通型、渐变型、突变型、混炼型、分离型、分流型以及各种屏障型、销钉型、DIS开扎分流型
和排气型等;螺桿头数可为单头或是变头等。
对于一般未加阻燃剂的塑料,使用普通通用螺桿就可以加工,只需要根据不同熔融粘度选用不同直径即可。如果
是性能较特殊的塑料、特殊制品或特殊颗粒形状的塑料,必须使用专用螺桿。通用螺桿对某一种塑料来说,在塑化和
消耗功率等方面比不上专用螺桿性能优越。下面就是各种特殊产品、特殊需要而制造的专用螺桿作逐一介绍。
PC专用螺桿
Pc为高粘度非结晶性塑料,流动性差,长时间受热易降解,加料扭矩大,难熔融,易滞塞,需高料温、高压力注
射,料温调节范围较窄,工艺性不如PMMA。
螺桿采用进口高合金钢全硬化处理 ,有效承受高扭力、高压力冲击,耐磨耗,表面电镀,耐腐蚀,平滑无孔隙以
减少表面粘附和降解,细部结构精心处理 ,藏胶有效防止 ,低剪切设计,发热小。一般取中小直径,成型PCABS+PC、
PP-R、阻燃ABS等效果好。也可成型一般塑料及PMMA普通制品,但混色效果较差。如塑料中加色粉,需订做加强混色
型螺桿。
配合业界超薄精密成型,提供螺桿直径大改小,长改短,提升射出压力到 3000Kgf/cm 以上,射座前移改造(改
造后可以正常恢复原状)。
PMMA专用螺桿
PMMA为高粘度非结晶性塑料,质性强韧加料扭矩大,难熔融,易滞塞,剪切敏感易降解,流动性稍差,必须高料
温、高压力注射,料温调节范围宽,工艺性较好。
螺桿压缩比较大,采用进口高合金钢全硬化处理,有效承受高扭力、高压力冲击,表面电镀硬铬减少表面粘附和
降解,塑化均匀效果好,混色好,低剪切设计发热低,降解率低。一般取中间直径,成型PMMA、PP-R、PC、阻ABS等
加色粉时效果好。
CP、CA酸性螺桿组件:
针对CP、CA等酸性塑料腐蚀性强的特性,螺桿、熔胶筒以及其它塑化零件在结构及表面处理上都做了特殊设计。
螺桿组件耐腐蚀性好。推荐配套使用双合金料筒以耐腐蚀。
PVC专用螺桿
PVC塑料可分为粒状及粉状,对温度的反应非常敏感易分解,粘度高、腐蚀性强。螺桿的设计有两个特点:表面必
须镀铬;没有分胶圈及分胶介子。
螺桿塑化好、剪切发热少,耐酸性腐蚀。因为没有过胶圈,不能用于低粘度塑料和注射速度压力分级较精确的制
品。
螺桿的设计有两种:螺桿和分胶头一体式;螺桿和分胶头分开式。对产品的质量要求高和只打制单一塑(PVC)则
使用连体式最合适
,反之则可选用分体式,但需注意,螺桿和分胶头分开易造成积料。但选用何种螺桿我司建议必须加上专用温度表作精确的温度控制,由于需散热降温,做PVC产品时熔胶筒要采用强制风冷措施与螺桿配合使用。打制玩具的软PVC除外
。
PU、TPU专用螺桿
针对PU剪切敏感易过火,粘附力强和特点而设计,表面电镀硬铬,加料顺畅,塑化效率高,温升低。
软胶、EVA发泡型专用螺桿
低剪切,高输送效率设计,表面电镀硬铬。
PET专用桿
PET塑料为现时一般塑料瓶装饮料的常用原料,粘度低、流动性好、比热容大、易粘料,,成型温度高,但料温调
节范围窄,工艺性差,PET射出成型时若料温太高、螺桿剪切太大或转速太快时均容易产生乙醛而导致酸化。
针对PET以及PET瓶坯要求塑化快、塑化均匀的特性,螺桿塑化好、稳定性高、不粘料、熔胶速度快、所做瓶坯吹
瓶时成率高。也可成型一般塑料。但要注意在大陆一般的生产商在打制PET瓶坯时会加进水口料,在此情况下则PET专
用螺桿并不是很适用,反之普通螺桿镀铬更为合适。有必要在射咀中附加防流涎装置。
PA6/66/46/6T专用螺桿钉
PA为低粘度结晶性塑料,高温、熔融速度快,自润滑性好,流动性好属水性易流涎,温度敏感易冷头、吸湿性大易
卡住加料段螺槽,着色难。
螺桿压缩比大,止逆精密,混色效果好,进料量稳定、塑化效率高,排气效果好。一般取中间直径,成型PA、PP、
LCP等结晶型低粘度塑料效果好. 也可成型一般塑料。对于PC、PMMA阻燃ABS等高粘度及热稳定性差的塑料不适用(中
段温度过高、分解),成型POM有必要电镀硬铬。射咀恒温加热最好,且必要附加防流涎装置。
PPO专用螺桿
PPO属非结晶材料,难熔融,易滞塞,对剪切敏感,易降解。
推荐使用双合金提高耐磨、耐腐蚀性,C级即可,螺桿加料顺畅,产生压力稳定。
PBT+GF专用螺桿
PBT属饱和树脂,半结晶材料,熔融度高,结晶迅速固化快,容易分解,对压力敏感以及需添加玻璃纤维。
必须使用双合金提高耐磨性 ,根据加织量 ,有C、B、A三种工程等级可选 ,螺桿产生压力稳定。成型PBT+GF、
PA+GF等结晶型低粘度普通工程塑料效果好。
大理石纹专用螺桿
两种方案:A:只需要更换大理石纹效果螺桿;B:更换大理石纹螺桿料管整套,控制电脑修改程式或加电气外挂 。
电木、尿素专用螺桿料管组
料管用热油回圈式加热,螺桿推荐C级双合金;旧塑料机也可改制成电木射出。
混炼头加强混色效果
混炼头是分胶头的另一个设计,主要加强混色效果,但使用时有以下限制:会引起熔胶时背压增大;熔胶时间增
长;不适用于黏度高的塑料,如PMMA、PC等。如客户对混色不满意一般可增大熔胶背压及减低螺桿转速,会有一定的
效果出现。如客户不愿用混炼头来加混色效果,还可采用菊花型射胶介子。
(不锈钢)连体式聊管头,加长射咀,弹弓射咀等
射胶螺杆简介
塑料化螺桿依照几何外型区分三个区段
1、进料区(Feed zone)
此区段为固定螺桿螺沟之沟深,塑料固体颗粒被紧密压缩形成固体床(solided),由于受到熔胶筒的剪切效应作用
,除了使塑料温度逐渐升高,还将塑料往前输送,必须保证塑料在进料段结束时开始熔融( 也就是说要预热到熔点)。
此区段长度分为结晶性(PA、POM、PE、PP、CA等),非结晶性(AS、PS、PU、ABS等 ),热敏性(PVC等),加玻性等。一般
固态比热↑、熔点↑、潜热↑,加热到熔点需热多,入料段应长;固态热传导系数↓,传热慢、塑料中心温升慢,入料
段应长;预热↑,入料段可短。结晶性料最长,非晶性料次之,热敏性最短。
2、压缩区(compression zone)
此区段为渐缩螺桿螺沟牙深,其功能为塑料原料熔融、混炼、剪切压缩与加压排气。塑料在此段会完溶解,体积
会缩小,所以压缩程度的设计(压缩比)很重要。对非晶性塑料,压缩段应长一些,否则若螺槽体积下降快,料体积未
减少,会产生堵塞。结晶型塑料实际上非全部结晶(如PE:40~90%结晶度,LDPE:65%结晶度),因此目前压缩段有加
长的趋势。而热敏性、高黏度、耐火性、低传导性、高添加物都需要特别考虑。
3、计量区(metering zone)
此区段为螺桿螺沟固定沟深,其主要功能混炼、熔胶输出送、计量之外,还必须提供足够的压力,保持熔胶均匀
温度及稳定熔融塑料之流量.计量段长,则混炼效果佳;计量段太长则易使熔体停留过久,而产生热分解;太短则易使
温度不均匀。
影响塑化质量主要因素
长径比=螺桿工作长度(mm)÷螺桿直径(mm)
长径比大,则吃料易均匀,但容易过火。热稳定性较佳之塑料可用较长之螺桿,以提高混炼性而不虑烧焦;热稳
定性较差之塑料,可用较短之螺桿或螺桿尾端无螺纹。
压缩比=进料牙深(mm)÷计量牙深(mm)
考虑料的压缩性、装填程度、回流、制品要密实、传热与排气。适当的压缩比,可增加塑料之密度,使分子与分
子之间的结合更加紧密,有助于减少空气的吸入,降低因压力而产生之温升,而影响输出量的差异,而不适当之压缩比
将会破坏塑料的物性.压缩比值越高,对塑料在料管内塑化过程中产生的温升越高,对胶化中的塑料产生较佳的混炼
均匀度,相对的出料量大为减少。当进料段牙深愈深输送量愈大,但螺桿所需扭力较大;进料段牙深太浅,输送量不
够,压缩比不足。当计量段牙深太深,压缩比不足,所需用送料力量较大;太浅时容易过火而烧焦。高压缩比适于不
易熔塑料,特别具低熔化黏度、热安定性塑料。低压缩比适于易熔塑料,特别具高熔化黏度性,热敏性 塑料。
螺桿选用原则
欲得混炼效果佳者,采长径比大、牙数多、压缩比大、计量牙深较浅之设计(如:PA、PE、PP、POM)。
欲防止过火现象者,采长径比小、牙数少、压缩段长、压缩比小、计量牙深较深之设计(如:PC、PMMA、
硬质PVC、加玻织或防火料)。
欲得高塑化率者,采压缩比较小、计量牙深较深之设计(如:ABS、475料)。
[特 点]
通常螺桿可分为普通型、渐变型、突变型、混炼型、分离型、分流型以及各种屏障型、销钉型、DIS开扎分流型
和排气型等;螺桿头数可为单头或是变头等。
对于一般未加阻燃剂的塑料,使用普通通用螺桿就可以加工,只需要根据不同熔融粘度选用不同直径即可。如果
是性能较特殊的塑料、特殊制品或特殊颗粒形状的塑料,必须使用专用螺桿。通用螺桿对某一种塑料来说,在塑化和
消耗功率等方面比不上专用螺桿性能优越。下面就是各种特殊产品、特殊需要而制造的专用螺桿作逐一介绍。
PC专用螺桿
Pc为高粘度非结晶性塑料,流动性差,长时间受热易降解,加料扭矩大,难熔融,易滞塞,需高料温、高压力注
射,料温调节范围较窄,工艺性不如PMMA。
螺桿采用进口高合金钢全硬化处理 ,有效承受高扭力、高压力冲击,耐磨耗,表面电镀,耐腐蚀,平滑无孔隙以
减少表面粘附和降解,细部结构精心处理 ,藏胶有效防止 ,低剪切设计,发热小。一般取中小直径,成型PCABS+PC、
PP-R、阻燃ABS等效果好。也可成型一般塑料及PMMA普通制品,但混色效果较差。如塑料中加色粉,需订做加强混色
型螺桿。
配合业界超薄精密成型,提供螺桿直径大改小,长改短,提升射出压力到 3000Kgf/cm 以上,射座前移改造(改
造后可以正常恢复原状)。
PMMA专用螺桿
PMMA为高粘度非结晶性塑料,质性强韧加料扭矩大,难熔融,易滞塞,剪切敏感易降解,流动性稍差,必须高料
温、高压力注射,料温调节范围宽,工艺性较好。
螺桿压缩比较大,采用进口高合金钢全硬化处理,有效承受高扭力、高压力冲击,表面电镀硬铬减少表面粘附和
降解,塑化均匀效果好,混色好,低剪切设计发热低,降解率低。一般取中间直径,成型PMMA、PP-R、PC、阻ABS等
加色粉时效果好。
CP、CA酸性螺桿组件:
针对CP、CA等酸性塑料腐蚀性强的特性,螺桿、熔胶筒以及其它塑化零件在结构及表面处理上都做了特殊设计。
螺桿组件耐腐蚀性好。推荐配套使用双合金料筒以耐腐蚀。
PVC专用螺桿
PVC塑料可分为粒状及粉状,对温度的反应非常敏感易分解,粘度高、腐蚀性强。螺桿的设计有两个特点:表面必
须镀铬;没有分胶圈及分胶介子。
螺桿塑化好、剪切发热少,耐酸性腐蚀。因为没有过胶圈,不能用于低粘度塑料和注射速度压力分级较精确的制
品。
螺桿的设计有两种:螺桿和分胶头一体式;螺桿和分胶头分开式。对产品的质量要求高和只打制单一塑(PVC)则
使用连体式最合适
,反之则可选用分体式,但需注意,螺桿和分胶头分开易造成积料。但选用何种螺桿我司建议必须加上专用温度表作精确的温度控制,由于需散热降温,做PVC产品时熔胶筒要采用强制风冷措施与螺桿配合使用。打制玩具的软PVC除外
。
PU、TPU专用螺桿
针对PU剪切敏感易过火,粘附力强和特点而设计,表面电镀硬铬,加料顺畅,塑化效率高,温升低。
软胶、EVA发泡型专用螺桿
低剪切,高输送效率设计,表面电镀硬铬。
PET专用桿
PET塑料为现时一般塑料瓶装饮料的常用原料,粘度低、流动性好、比热容大、易粘料,,成型温度高,但料温调
节范围窄,工艺性差,PET射出成型时若料温太高、螺桿剪切太大或转速太快时均容易产生乙醛而导致酸化。
针对PET以及PET瓶坯要求塑化快、塑化均匀的特性,螺桿塑化好、稳定性高、不粘料、熔胶速度快、所做瓶坯吹
瓶时成率高。也可成型一般塑料。但要注意在大陆一般的生产商在打制PET瓶坯时会加进水口料,在此情况下则PET专
用螺桿并不是很适用,反之普通螺桿镀铬更为合适。有必要在射咀中附加防流涎装置。
PA6/66/46/6T专用螺桿钉
PA为低粘度结晶性塑料,高温、熔融速度快,自润滑性好,流动性好属水性易流涎,温度敏感易冷头、吸湿性大易
卡住加料段螺槽,着色难。
螺桿压缩比大,止逆精密,混色效果好,进料量稳定、塑化效率高,排气效果好。一般取中间直径,成型PA、PP、
LCP等结晶型低粘度塑料效果好. 也可成型一般塑料。对于PC、PMMA阻燃ABS等高粘度及热稳定性差的塑料不适用(中
段温度过高、分解),成型POM有必要电镀硬铬。射咀恒温加热最好,且必要附加防流涎装置。
PPO专用螺桿
PPO属非结晶材料,难熔融,易滞塞,对剪切敏感,易降解。
推荐使用双合金提高耐磨、耐腐蚀性,C级即可,螺桿加料顺畅,产生压力稳定。
PBT+GF专用螺桿
PBT属饱和树脂,半结晶材料,熔融度高,结晶迅速固化快,容易分解,对压力敏感以及需添加玻璃纤维。
必须使用双合金提高耐磨性 ,根据加织量 ,有C、B、A三种工程等级可选 ,螺桿产生压力稳定。成型PBT+GF、
PA+GF等结晶型低粘度普通工程塑料效果好。
大理石纹专用螺桿
两种方案:A:只需要更换大理石纹效果螺桿;B:更换大理石纹螺桿料管整套,控制电脑修改程式或加电气外挂 。
电木、尿素专用螺桿料管组
料管用热油回圈式加热,螺桿推荐C级双合金;旧塑料机也可改制成电木射出。
混炼头加强混色效果
混炼头是分胶头的另一个设计,主要加强混色效果,但使用时有以下限制:会引起熔胶时背压增大;熔胶时间增
长;不适用于黏度高的塑料,如PMMA、PC等。如客户对混色不满意一般可增大熔胶背压及减低螺桿转速,会有一定的
效果出现。如客户不愿用混炼头来加混色效果,还可采用菊花型射胶介子。
(不锈钢)连体式聊管头,加长射咀,弹弓射咀等
射胶螺杆简介
塑料化螺桿依照几何外型区分三个区段
1、进料区(Feed zone)
此区段为固定螺桿螺沟之沟深,塑料固体颗粒被紧密压缩形成固体床(solided),由于受到熔胶筒的剪切效应作用
,除了使塑料温度逐渐升高,还将塑料往前输送,必须保证塑料在进料段结束时开始熔融( 也就是说要预热到熔点)。
此区段长度分为结晶性(PA、POM、PE、PP、CA等),非结晶性(AS、PS、PU、ABS等 ),热敏性(PVC等),加玻性等。一般
固态比热↑、熔点↑、潜热↑,加热到熔点需热多,入料段应长;固态热传导系数↓,传热慢、塑料中心温升慢,入料
段应长;预热↑,入料段可短。结晶性料最长,非晶性料次之,热敏性最短。
2、压缩区(compression zone)
此区段为渐缩螺桿螺沟牙深,其功能为塑料原料熔融、混炼、剪切压缩与加压排气。塑料在此段会完溶解,体积
会缩小,所以压缩程度的设计(压缩比)很重要。对非晶性塑料,压缩段应长一些,否则若螺槽体积下降快,料体积未
减少,会产生堵塞。结晶型塑料实际上非全部结晶(如PE:40~90%结晶度,LDPE:65%结晶度),因此目前压缩段有加
长的趋势。而热敏性、高黏度、耐火性、低传导性、高添加物都需要特别考虑。
3、计量区(metering zone)
此区段为螺桿螺沟固定沟深,其主要功能混炼、熔胶输出送、计量之外,还必须提供足够的压力,保持熔胶均匀
温度及稳定熔融塑料之流量.计量段长,则混炼效果佳;计量段太长则易使熔体停留过久,而产生热分解;太短则易使
温度不均匀。
影响塑化质量主要因素
长径比=螺桿工作长度(mm)÷螺桿直径(mm)
长径比大,则吃料易均匀,但容易过火。热稳定性较佳之塑料可用较长之螺桿,以提高混炼性而不虑烧焦;热稳
定性较差之塑料,可用较短之螺桿或螺桿尾端无螺纹。
压缩比=进料牙深(mm)÷计量牙深(mm)
考虑料的压缩性、装填程度、回流、制品要密实、传热与排气。适当的压缩比,可增加塑料之密度,使分子与分
子之间的结合更加紧密,有助于减少空气的吸入,降低因压力而产生之温升,而影响输出量的差异,而不适当之压缩比
将会破坏塑料的物性.压缩比值越高,对塑料在料管内塑化过程中产生的温升越高,对胶化中的塑料产生较佳的混炼
均匀度,相对的出料量大为减少。当进料段牙深愈深输送量愈大,但螺桿所需扭力较大;进料段牙深太浅,输送量不
够,压缩比不足。当计量段牙深太深,压缩比不足,所需用送料力量较大;太浅时容易过火而烧焦。高压缩比适于不
易熔塑料,特别具低熔化黏度、热安定性塑料。低压缩比适于易熔塑料,特别具高熔化黏度性,热敏性 塑料。
螺桿选用原则
欲得混炼效果佳者,采长径比大、牙数多、压缩比大、计量牙深较浅之设计(如:PA、PE、PP、POM)。
欲防止过火现象者,采长径比小、牙数少、压缩段长、压缩比小、计量牙深较深之设计(如:PC、PMMA、
硬质PVC、加玻织或防火料)。
欲得高塑化率者,采压缩比较小、计量牙深较深之设计(如:ABS、475料)。